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The dynamics of opinion formation in large groups of people is a complex nonlinear phenomenon whose
investigation is just beginning. Both collective behavior and personal views play an important role in this
mechanism. In the present work we mimic the dynamics of opinion formation of a group of agents, represented
by two states ±1, as a stochastic response of each agent to the opinion of his/her neighbors in the social
network and to feedback from the average opinion of the whole. In the light of recent studies, a scale-free
Barabási-Albert network has been selected to simulate the topology of the interactions. A turbulentlike dynam-
ics, characterized by an intermittent behavior, is observed for a certain range of the model parameters. The
problem of uncertainty in decision taking is also addressed both from a topological point of view, using random
and targeted removal of agents from the network, and by implementing a three-state model, where the third
state, zero, is related to the information available to each agent. Finally, the results of the model are tested
against the best known network of social interactions: the stock market. A time series of daily closures of the
Dow-Jones index has been used as an indicator of the possible applicability of our model in the financial
context. Good qualitative agreement is found.
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I. INTRODUCTION

Systems composed of many parts that interact with each
other in a nontrivial way are often referred to as complex
systems. The social relations between individuals can per-
haps be included in this category. An intriguing issue con-
cerns the role played by the topological structure of the so-
cial network in governing the dynamical behavior of the
system.

Recent studies of the topological properties of interactions
in different biological, social, and technological systems
have made it possible to shed some light on the basic prin-
ciples of structural self-organization. A few examples include
food webs �1�, power grids and neural networks �2,3�, cellu-
lar networks �4�, sexual contacts �5�, Internet routers �6�, the
World Wide Web �7�, actor collaborations �2,3,8,9�, the cita-
tion networks of scientists �10�, and the stock market �11�.
Although different in the underlying interaction dynamics or
microphysics, all these networks have shown a tendency to
self-organize in structures that share common features. In
particular, the number of connections k for each element, or
node, of the network follow a power law distribution P�k�
�k−�. Networks that satisfy this property are referred to as
scale-free �SF� networks. In addition many of these networks
are characterized by a high clustering coefficient C, in com-
parison with random graphs �12�. The clustering coefficient
C is computed as the average of local clustering Ci for the ith
node, defined as

Ci =
2yi

zi�zi − 1�
, �1�

where zi is the total number of nodes linked to the site i and
yi is the total number of links between those nodes. As a
consequence both Ci and C lie in the interval �0,1�. The high

level of clustering found supports the idea that a herding
phenomenon is a common feature in social and biological
communities.

Numerical studies on SF networks have demonstrated
how the topology plays a fundamental role in infection
spreading �13� and tolerance against random and preferential
node removal �14�. A detailed description of the progress in
this emerging field of statistical mechanics can be found in
the recent reviews of Refs. �15,16�. In the present work we
investigate the implication of a scale-free topology in a sto-
chastic opinion formation model. Similar versions of this
model have been tested in regular lattices �17,18� and perco-
lation clusters �19�. These models adopt a mean field ap-
proach where the interactions are extended between all the
individuals in the lattice or cluster, respectively. In contrast,
our simulation focuses on the role of short-range first-
neighbor interactions for cases where the topological struc-
ture of the interactions is not trivial.

In the next section we describe the model used for the
simulation. In Sec. III we show the results obtained numeri-
cally while in Sec. IV we investigate the importance of fail-
ures in the network during the process of opinion formation.
In Sec. V the two-state model is extended to three states and
the numerical results are compared. In Secs. VI and VII we
test the results of our simulations against the best known
social network: the stock market. In particular the time series
of average opinion fluctuations obtained with the model is
compared with the time series of price variations for the
Dow-Jones index from 13/1/1930 to 13/4/2004. The final
section presents further discussion and conclusions.

II. THE MODEL

In the present work we investigate the opinion formation
process of a group of N individuals, represented by nodes on
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a SF network. The mechanism of opinion formation is simu-
lated using stochastic heat bath dynamics with feedback. The
opinion of each agent is of a Boolean type. That is, at each
discrete time step t, the opinion is represented by one of two
possible states �or spin orientations�, namely, �i�t�= ±1, for
the ith agent. A practical example could be the decision to
buy, �i�t�= +1, or sell, �i�t�=−1, a stock in a virtual stock
market.

In order to mimic the scale-free network topology we
make use of the Barabási-Albert model �9�. This is based on
two main assumption: �i� linear growth and �ii� preferential
attachment. In practice the network is initialized with m0
disconnected nodes. At each step a new node with m edges is
added to the preexisting network. The probability that an
edge of the new node is linked with the ith node is expressed
by ��ki�=ki /� jkj. The iteration of this preferential growing
process yields a scale-free network P�k��k−� where �=3.

It is worth noting that the Barabási-Albert model cannot
reproduce a high clustering coefficient. In fact, the value of
this coefficient depends on the total number of nodes in the
network �15� and in the thermodynamic limit, N→�, C
→0. In principle the observed local clustering can play an
important role in the opinion formation of groups of people,
independent of their total number. In order to account for
this, we introduce a further step in the growth process,
namely, the triad formation proposed by Holme and Kim
�20�. In this case, if the new added node is linked with an

older node i having other links, then with a certain probabil-
ity � the next link of the new node, if any remain, will be
added to a randomly selected neighbor of node i. This
method of introducing friends to friends, while preserving
the scale-free nature of the networks, generates high cluster-
ing coefficients that do not depend on the number of nodes in
the network. The only tunable parameter that changes the
value of the clustering coefficient is the clustering probabil-
ity �. An example of a SF network generated with this algo-
rithm is shown in Fig. 1 for 500 nodes.1

Once the scale-free network has been built, we randomly
assign the spin values ±1 to every node and start the simu-
lation of opinion formation. We neglect, in the first approxi-
mation, the network dynamics. This is equivalent to assum-
ing that the time scale for evolving the network is much
longer that the time needed for people to make a decision.

The dynamics of the spins follows a stochastic process
that mimics the human uncertainty in decision making
�18,19�. Values are updated synchronously according to a
local probabilistic rule: �i�t+1�= +1 with probability pi and
�i�t+1�=−1 with probability 1− pi. The probability pi is de-
termined, by analogy with heat bath dynamics with formal
temperature kBT=1, by

1Another model for acquaintance networks, showing properties
similar to the one presented in this work, has been proposed by
Davidsen et al. �22�.

FIG. 1. �Color online�. Example of a scale-free network. The number of nodes is 500 with clustering probability �=0.9 and m0=m=2,
so that each new node is linked twice. The number of nodes has been kept small in order to preserve the clarity of the plot. Note that, for
such small networks, a large scale invariant range is obtained only if one considers the ensemble average over several realizations. This plot
has been realized with the PAJEK software �21�.
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pi�t� =
1

1 + e−2Ii�t�
, �2�

where the local field Ii�t� is

Ii�t� = a��t�Ñi
−1�

j=1

Ñi

� j�t� + hi�i�t�r�t� . �3�

The first term on the right-hand side of Eq. �3� represents the
time dependent interaction strengths between the node i and

his/her Ñi information sources, which are the first neighbors
in the network. The second term instead reflects the personal
reaction to the system feedback, that is, the average opinion,

r�t� =
1

N
�
j=1

N

� j�t� , �4�

resulting from the previous time step. The terms ��t� and
�i�t� are random variables uniformly distributed in the inter-
val ��1,1� with no correlation in time nor in the network.
They represent the conviction, at time t, with which agent i
responds to his/her group �common for all the agents� and
the global opinion of the network, respectively. The strength
term a is constant and common for the whole network, while
hi is specifically chosen for every individual from a uniform
distribution in �0,	� and are both constant in the dynamics of
the system. By varying the parameter 	 we can give more or
less weight to the role of feedback in the model. The strength
coefficients a and hi in the local field Ii, characterizing the
attributes of the agents, play a key role in the dynamics of
the model. They represent the relative importance that each
agent of the network gives, respectively, to his/her group and
to the variation of the average opinion itself.

III. NUMERICAL SIMULATIONS

At first we investigate the importance of the group
strength a by fixing 	=a. In this case the dynamical behavior
is similar to that found in the stock market context in Refs.
�17–19�. For a
1 the resulting time series of average opin-
ion is largely uncorrelated Gaussian noise with no particu-
larly interesting features, as illustrated in Fig. 2�a�.

As soon as we exceed the value of a�1 a turbulentlike
regime sets in, characterized by large intermittent fluctua-
tions, as illustrated in Figs. 2�b� → Fig. 2�d�. These large
fluctuations, or coherent events, can be interpreted in terms
of a multiplicative stochastic process with a weak additive
noise background �18,23�. For a�2.7 we observe that the
bursts of the time series begin to saturate the bounds −1
�r�1.

In Fig. 3 we plot the probability distribution functions
�PDFs� associated with the time series of Fig. 2. The large
fluctuations, for a greater than �1, are reflected in the fat
tails of the relative PDFs. Decreasing the value of a, and so
the number of coherent events, the PDF converges to a
Gaussian distribution generated by a random Poisson pro-
cess.

The personal response to the change in the average opin-
ion also plays an important role in the turbulentlike regime

of the simulation. In order to study the impact of this term on
the dynamics we change the parameter 	 while keeping a
fixed at 1.8. The results are summarized by the PDF plots in
Fig. 4. For 	=0 the behavior of the time series is still turbu-
lentlike, underlying how the network group interaction is, in

FIG. 2. Time series of the average opinion r for different values
of the group interaction strength parameter a: a= �i� 0.8, �ii� 1.5,
�iii� 1.8, and �iv� 2.3. The parameters used for the simulations are
N=104 nodes, clustering probability �=0.9, initial nodes and links
per new node m0=m=5, and we take the upper bound of the distri-
bution of personal response strengths equal to the group interaction
strength, that is, 	=a. The results involve ten realizations of the
scale-free network each displayed for 5000 time steps. For values of
a greater than 1 a turbulentlike state, characterized by large fluctua-
tions, starts to appear in the process of opinion formation. The
clustering probability �=0.9, related to the triad formation in the
network, fixes the clustering coefficient to C�0.39. This value is
similar to that found for many real systems �15,16�.

FIG. 3. PDFs of the time series relative to Fig. 2. The shapes of
the distributions converge to a Gaussian for small values of the
group interaction strength a=	. A Gaussian distribution is also plot-
ted for comparison. All the PDFs in this paper are obtained over 50
realizations of the SF network. In order to compare the fluctuations
at different scales, the time series in the plot have been normalized
according to r�t�→ �r�t�− r̄� /�, where r̄ and � denote the average
and the standard deviation over the period considered, respectively.
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reality, the only crucial factor for the appearance of coherent
events. As expected, incrementing the value of 	 leads to a
progressive crossover toward a noise regime. It is important
to notice how this regime is reached for 	�10a. The group
interactions continue to play an important role even when the
average value of hi is large compared to a.

In order to test the relevance of the network structure on
the process of opinion formation, the previous simulations
have been repeated, with a large number of nodes, N, and
	=a, for different values of the clustering parameter � and
the node-edge parameter m. While varying � does not lead to
any substantial difference in the dynamics of the model, the

increase of the average number of links per node, k̄=2m, has
a dramatic effect in the turbulentlike phase, as shown in Fig.
5. Here the kurtosis �Kr= �r4	 / �r2	2, where �¯	 denotes the
temporal average� of the time series of the average opinion,
used to quantify the deviation from a noise regime, is plotted
against m. It is evident that an increase in the average num-
ber of links per node gives rise to more turbulence charac-
terized by larger fluctuations and broader tails in the PDF.
Large scale synchronizations are more likely to occur for
large m. This behavior is intrinsically related to the model of
Eqs. �2� and �3�. In fact, the turbulentlike regime is a conse-
quence of the random fluctuations of the interaction strengths
between agents around a bifurcation value separating the or-
dered and disordered phase.

If we take the thermodynamic limit, where N→� and
m→�, then the coupling strengths between agents can be
approximated well by the average strength over all the net-
work and a mean field approach becomes appropriate to de-
scribe the dynamics of the model. Krawiecki et al. �18� pro-
posed the following map:

r�t + 1� = A��t�r�t� + h��t� , �5�

as a mean field approximation of a stochastic dynamical sys-
tem similar to the one used in the present work. Here A and

h are coupling coefficients and ��t� and ��t� random numbers
in the interval �−1,1�. The map of Eq. �5� is a generic model
for on-off intermittency and attractor bubbling extensively
studied in chaos theory �24–28�.

It is also worth pointing out that an increase of k̄ is related
to a decrease in the average path length between nodes; that
is, the network “shrinks” and becomes more compact. In
relation to our previous discussion, the more compact the
network is the more the dynamics of our system approaches
the mean field approximation. It becomes easier for the
agents to synchronize. This characteristic of compactness,
referred to as the small world effect �12,15,16�, is actually
very common in both real and artificial networks.

We further investigate the importance of the SF network
topology and the small world effect in our model by per-
forming a numerical simulation of the same system but using
a random network �RN� or random graph as the underlying
topology. Given a fixed a number of nodes N, a RN is de-
fined by the probability p that two nodes are linked together

�12,15,16�. In this case k̄= pN and, moreover, there exists a
critical value p
 pc�1/N for which the network undergoes
a topological phase transition where it moves from a phase
where it is composed of a collection of small, disjoint sub-
networks to a phase where a giant cluster emerges.2 Random
networks, while preserving small world properties, have a
Poisson degree distribution �15� P�k�, and small clustering
coefficients. As previously mentioned, we make use of the
RN to test the robustness of our model with respect to the
topology used and to learn about the most important proper-
ties relevant to the dynamics. In order to do so, we fix the

2Note the analogy between the random network theory and the
standard percolation theory on a lattice �29� where the structural
properties of the system are studied as a function of percolation
probability.

FIG. 4. The importance of the personal response related to the
global opinion strength parameter 	 is shown by the change of
shapes of the PDFs for group interaction strength a=1.8. For large
values of 	 the time series of global opinion approaches Gaussian
noise. The time series of r has been normalized—see the caption of
Fig. 3.

FIG. 5. Dependence of the kurtosis, defined as Kr= �r4	 / �r2	2,
where �¯	 denotes the temporal average, as a function of the node-
edge parameter m. For a Gaussian noise process Kr=3 while for
Kr�3 large deviations from the average start to appear. The final
value for each m has been obtain after an average over 50 configu-
rations of the network. The calculations show an exponential in-
crease for Kr.
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number of agents and the average number of links for the SF

and RN, namely, N=104 and k̄=10. Then we perform inde-
pendent numerical simulations on the two topologies. Note

that for the RN, k̄=10 requires p=10/N, which is ten times
greater than the percolation threshold. The results, shown in
Fig. 6 �left� demonstrate how the dynamics of the two sys-
tems are largely equivalent under the adopted constrains. In
Fig. 6 �right� we also show the dependence of the dynamics
on the parameter p for the RN. At the critical threshold, that
is the value of p for which a giant cluster appears, there is
still no trace of turbulentlike activity giving rise to fat tails.
Yet in this case each agent has, on average, just one link and
there cannot be any small world properties.

These results confirm that the critical topological charac-
teristic leading to herding behavior in the framework of sto-
chastic opinion formation is the presence of mean field ef-
fects enhanced by small world structure. The more
information �links� that an agent has, the more likely it is for
him/her to have an opinion in accord with other agents.

In the next section we extend our model in order to in-
clude indecision in the process of opinion formation.

IV. THE INFLUENCE OF INDECISION

We now extend our model in order to include the concept
of indecision. In practice a certain agent i, at a time step t,
may take neither of the two possible decisions, �i= ±1, but
remain in a neutral state. Keeping faith with the spirit of the
model, we address this problem by introducing an indecision
probability : that is, the probability to find, at each time
step, a certain agent undecided. This is equivalent to intro-
ducing time dependent failures in the structure of the net-
work by setting �=0.

Focusing on the turbulentlike regime, the shape of the
PDF in the opinion fluctuations changes according to differ-
ent concentrations of undecided persons. The results of the

simulations, in Fig. 7, show how the dynamics of the model
move from an intermittent state for =0 toward a noise state
for �0.6. The convergence to a Gaussian distribution is
obtained only for quite high concentrations of undecided
agents at about 60%. The robustness of the turbulentlike be-
havior is related to the intrinsic robustness of SF networks
against random failures �14�. In fact, because there is a large
absolute number of poorly connected nodes, related to the
power law shape of P�k�, the probability of setting one of
them to inactive is much higher compared to the “hubs”
which are relatively rare.

We can claim that, in large social networks governed by
stochastic reactions in their elements, large fluctuations in
the average opinion can appear even in the case in which a

FIG. 6. Left: comparison between the PDFs of our model obtained on a SF network and on a RN with number of nodes N=104 and

average links per node k̄=10. For the SF network the parameters used are m=m0=5 for the links of each new node and �=0.9 for the
clustering probability while for the RN p=10/N. From a statistical point of view the characteristic features of the PDFs have their origin in
the model dynamics as opposed to the fine features of the network. Right: Dependence of the opinion fluctuations on the parameter p on a
RN. The parameters used for the dynamics are a=1.8 and 	=a for the group and global opinion response, respectively.

FIG. 7. Transition from coherent behavior, indecision probabil-
ity =0, to noise using a random selection for the inactive agents.
For �0.6 we reach a noiselike behavior. The parameters used in
the simulation are N=104 nodes, �=0.9 for the clustering probabil-
ity, m=m0=5 for the links of each new node, a=1.8 and 	=a for
the group and global opinion response, respectively.
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large part of the network is actually “inactive” provided that
the structure is scale-free and the indecision is randomly dis-
tributed. The existence of large hubs provides for the sur-
vival of extended subnetworks in which synchronization can
give rise to coherent events. The structure of the network
itself supplies the random indecision.

Now we address the question of how the dynamics may
change if we do not choose randomly the inactive nodes but
target the nodes having the most links. What we do in prac-
tice is to sort the nodes according to their number of links
and then deactivate the nodes having the largest number of
links in decreasing order. Figure 8 illustrates how the frag-
mentation process is much faster and the noise regime is
reached already when only 10% of the hubs are deactivated.
As emphasized in Ref. �14�, the hubs have a great impor-
tance in the structural properties of SF networks and specifi-
cally targeting these nodes can lead to sudden isolation of a
large fraction of the nodes of the network.

V. AGENT INDUCED INDECISION: THE THREE-STATE
MODEL

In the previous section we introduced random and tar-
geted failures in order to study the response of the system to
changes in the network topology. In a real social network the
reason behind the indecision of a person follows much more
complex rules and can depend on different factors as, for
example, unsatisfactory information obtained by his/her
sources. As seen from Eq. �3�, the opinion of each agent
depends on the poll of his/her network links. Suppose now

that the agent i has Ñi neighbors where Ñi /2 of these share

the opinion �1 while the remaining Ñi /2 share the opposite
opinion. In this case, unless we give specific weights to each
node, the agent i will not have an easy task in choosing one
of the two possible positions because of a lack of popular
consensus. Based on this idea derived from common sense,
we can extend our two-state model by introducing an in-
duced indecision probability �, dependent on the informa-

tion available to the agents at each time step. In particular we
define the global opinion of the neighbours of the ith node as

si�t�=� j=1
Ñi � j�t� and the indecision probability for the ith node

at time t

�i�s,t� = cie
−si

2�t�/2�, �6�

where the indecision probability width � is a parameter of the
model and ci is a normalization constant that depends just on
the structure of the network. It is calculated at the beginning

of the simulation by imposing �
s=−Ñi

Ñi �i�s ,0�=1, i.e., the sum

of the indecision probabilities over all possible global opin-
ions to be one. The model of Eq. �6� assumes a Gaussian
probability, centered in si=0, for the distribution of indeci-
sion of the ith agent. That is, the probability of having this
agent in a state with �i=0 is greater when there is not a large
agreement in the opinion of his/her sources.

The analysis of the time series generated by the three-
state model does not present any relevant difference if com-
pared with the two-state model with the same parameters,
Fig. 9.

We also plot the PDF for the number of inactive agents,
Ns�t�, during the simulation, Fig. 10. It is interesting to notice
how this distribution is not Gaussian distributed around the
average but is skewed on one side. Moreover, only a small
fraction of agents is undecided, of the order of 10–15 %.
This is consistent with the observation that in opinion polls
most of the participants actually indicate an opinion.

VI. POSSIBLE APPLICATION: OPINION FORMATION
AND THE STOCK MARKET

The model for opinion formation discussed thus far can
be tested against the best known real social network: the

FIG. 8. In this simulation we progressively turn off the largest
hubs in the network. Once we have turned off about the 10% of
agents, N=104, the coherence in opinion formation disappears. The
parameters used in the simulations are the same as in Fig. 7.

FIG. 9. �a� A window of the normalized time series generated by
the two-state model with parameters N=104 nodes, �=0.9 for the
clustering probability, m=m0=5 for the links of each new node, a
=1.8 and 	=a for the group and global opinion response, respec-
tively. �b� Window of the normalized time series generated by the
three-state model with the same parameters as �a� and indecision
probability width �=1. �c� Comparison between the PDFs generated
by the two- and three-state models with the aforementioned param-
eters obtained over 50 realizations of the SF network. No relevant
differences can be observed.
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stock market. The main idea is to compare our results with
some stylized facts concerning the price time series P�t� and,
in particular, with the properties of the logarithm of the price
fluctuations, or returns, R�t�=ln P�t+1�−ln P�t�. In fact
some characteristic features are independent of the particular
market and can be considered as universal �30�. Moreover
the returns show an intermittent behavior, reminiscent of hy-
drodynamic turbulence �30–33�, also characterized by power
law tails in the PDF. In this case the large coherent events are
related to crashes or other anomalous variations of price.

If we assume that the variation of price is directly propor-
tional to changes in demand and supply,

dP

dt
� cpP , �7�

where cp is proportional to the average opinion r�t�, then the
returns are proportional to the average opinion R�t��r�t�.
Using this assumption, we compare the time series of aver-
age opinion generated by the two-state model against the
time series of daily closures of the Dow Jones index. The
data set spans the range 13/1/1930 to 13/4/2004 for a total of
18 645 samples. In Fig. 11, a comparison between the two
PDFs is shown. The similarities between the model and the
Dow Jones is remarkable. Both distributions have a leptokur-
tic shape and, in particular, they are described by power law
tails, expressing the turbulentlike dynamics of the time
series.3 Note that, in contrast to the self-organized model for
stock market dynamics proposed by Bak et al. �34�, here the
price feedback is not an essential ingredient for the reproduc-
tion of the correct shape of the distribution. Rather, it is the
herding behavior that plays the main role, as observed from
Fig. 4.

The similarities between the artificial time series gener-
ated by the virtual social network and the stock market ex-
tend beyond the fat tails in the PDF of the fluctuations to
temporal correlations. It is well known that the stock market
returns have negligible correlations on daily intervals while
the volatility �, defined as their absolute value, have a slow
power law decrease as a function of the time lag. This phe-
nomenon is known as volatility clustering �30�. In order to
make a comparison with our model we make use of the au-
tocorrelation function �. For a time series of L samples, xi for
i=1,… ,L, this is defined as

���� =

�
j=1

L−�

�xj − x̄��xj+� − x̄�

�
j=1

L−�

�xj − x̄�2

, �8�

where � is the time delay and x̄ represents the average over
the period under consideration. The autocorrelation has been
computed both for the returns and for the volatility. While
the time series of returns generated by the model and the
Dow-Jones index have an equivalent behavior, Fig. 12 �top�,
the same similarities do not hold for the volatility, Fig. 12
�bottom�. We observe a qualitatively different correlation:
while for the market we observe a power law behavior, the
memory in the time series generated by the model decays
exponentially like a short-range correlated random processes
�30�. This second point illustrates how nontrivial memory
effects in the stock market cannot be taken into account by a
simple heath bath dynamics.

In Fig. 12 �bottom� we also reproduce the autocorrelation
function for the model presented in Ref. �19�. In this model a
heat bath dynamics, similar to the one used in the present
simulations, is applied to dynamical percolation clusters,

3The problem of the actual shape of the PDF for the stock market
returns is still a matter of debate in the econophysics community
�30,35�. A solution to this problem would be of great interest, espe-
cially for the practical application of option pricing.

FIG. 10. PDF of the number of inactive agents, �i�t�=0, during
the simulation of the three-state model. The parameters used are the
same as used in Fig. 9.

FIG. 11. Comparison between the PDF of our model and the
time series of the Dow-Jones index from 13/1/1930 to 13/4/2004.
The parameters of the model used to reproduce the PDF in the plot
are N=104 nodes, �=0.9 for the clustering probability, m=m0=5
for links of each new node, a=1.8 and 	=a for the group and
global opinion response, respectively. A Gaussian is also superim-
posed in order to emphasize the fat tails.
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used as a paradigm for agents aggregation. The temporal
evolution of the clusters, whose size follows a power law
distribution, is related to a forest-fire dynamics in which
some potential traders are attracted in the market by other
already active traders while, at the same time, some of them
may temporally quit the trading. Large fluctuations in the
price changes are due to the synchronization of the larger
clusters in the market at a particular time. The main qualita-
tive difference between this model and the one presented so
far is that the former presents a decay rate much closer to
that of the real market. At this point it is important to under-
line that the main difference between the two models is re-
lated to the network dynamics. While in the present simula-
tion the network is fixed, in Ref. �19� the interactions
between agents are time dependent and localized in separate
clusters. We can argue that the dynamics of the networks
and, in particular, the clustering of agents in different sub-
networks can play an important role in the correlation prop-
erties of the stock market volatility. In reality, this fact ap-
pears quite natural if we use the autocorrelation function,
defined in Eq. �8�, in order to estimate the degree of memory
in a process. If, for example, the variable under investigation
is the sum over many independent Markovian processes, as
in Ref. �19�, then the resulting autocorrelation is given by the
convolution of the common exponential decay, proportional
to e−��, with the distribution of the decay rates, g���,

���� � �
0

�

g���e−��d� . �9�

According to the shape of this distribution, the observed
macroscopic variable can show a behavior characteristic of a
long memory processes, like the 1/ f Fourier spectrum �36�.
Power law tails in the probability distribution function,
������−�, are produced from the distribution g���
=����−1��−1, where � is the gamma function and � a generic
real exponent �37�. This fact strengthens the idea that the

stock market is organized in a hierarchy of subnetworks
where each of them can be considered, from a physical point
of view, at local equilibrium. For time periods shorter than
the typical time scale necessary for the networks to evolve,
the only link between the subsystems composing the market
is the feedback coming from the price history. This idea is
closely related to the concept of subordination used in prob-
ability theory �38�. The superposition of distributions, as a
possible explanation of fat-tailed processes, has been pro-
posed recently by Beck �39� in the context of hydrodynamic
turbulence and then extended also to other systems �40� in-
cluding the stock market �41�.

VII. MULTIFRACTAL ANALYSIS

Financial time series present an inherent multifractality
�42�. In the past few years the work of many authors
�19,43–46� has been addressed to the characterization of the
multifractal properties of financial time series, and nowadays
multifractality can be considered as a stylized fact. In order
to study the multifractal properties of our model we use the
generalized Hurst exponent �47� H�q�, derived via the
q-order structure function,

Sq��� = �x�t + �� − x�t�q	T � �qH�q�, �10�

where x�t� is a stochastic variable over a time interval T and
the time delay �. The generalized Hurst exponent, defined in
Eq. �10�, is an extension of the Hurst exponent H introduced
in the context of reservoir control on the Nile river dam
project, around 1907 �42,48�. This technique provides a sen-
sitive method for revealing long-term correlations in random
processes. If H�q�=H for every q, the process is said to be
monofractal and H is equivalent to the original definition of
the Hurst exponent. This is the case of simple Brownian
motion or fractional Brownian motion.

If the spectrum of H�q� is not constant with q the process
is said to be multifractal. From the definition �10� it is easy to
see that the function H�1� is related to the scaling properties
of the volatility. By analogy with the classical Hurst analysis,
a phenomenon is said to be persistent if H�1��1/2 and an-
tipersistent if H�1��1/2. For uncorrelated increments, as in
Brownian motion, H�1�=1/2. In Fig. 13 a comparison is
shown between the multifractal spectra of the model and the
Dow-Jones index obtained from the price time series. It is
clear that both processes have a multifractal structure and the
price fluctuations cannot be associated with a simple random
walk as in the classical efficient market hypothesis �49�.

VIII. DISCUSSION AND CONCLUSIONS

In the present work we have introduced a two-state model
of opinion in order to simulate the complex dynamics of
opinion formation in a group of individuals. The decision
updating is governed by a stochastic heat bath dynamics that
mimics the reaction of each person to his/her specific sources
of information as governed by the network neighbors and to
the average opinion of the whole group. Particular emphasis
has been given to the topology of the interactions between
agents, where a Barabási-Albert scale-free network has been

FIG. 12. Autocorrelation functions for the fluctuations r �top�
and the volatility � �bottom�. The parameters used to produce the
analyzed set are N=104 nodes, �=0.9 for the clustering probability,
m=m0=5 for the links of each new node, a=1.8 and 	=a for the
group and global opinion response, respectively.
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used to simulate the links between them. The choice of this
particular network is motivated by a series of recent studies
on social aggregation �15,16� but, as we have shown in Sec.
III, its use is not essential for the appearance of coherent
events. As in other studies �17–19�, we find a range in the
parameter space in which the fluctuations of opinion have a
nontrivial turbulentlike dynamics. The results of the simula-
tions show that the most important factor determining the
appearance of large fluctuations is the synchronization of
large parts of the network. As discussed in Sec. III, this fea-
ture plays an important role even in the case in which the
personal opinion is relatively strong. As a consequence large
coherent events are more likely to occur when the average
number of links per agent is larger.

The topology of the interactions also plays a key part in
the dynamics of the model. In fact, introducing inactive
agents and spreading the undecided agents randomly on the
network, does not spoil the turbulentlike state even for high
concentrations of “gaps,” up to approximately 60% of
agents. This is a consequence of the implicit robustness of
SF networks against random failures. If instead of selecting
randomly the undecided individuals we aim directly to the
“hubs” of the network then the situation changes. In this case
the network is disaggregate, composed of very small subnet-
works and isolated nodes. Synchronization cannot signifi-
cantly effect the resulting global opinion and the time series
approximates Gaussian noise. We also introduce, in Sec. V, a
three-state model. While the dynamics does not significantly
differ from the two-state model, we find a persistence of
opinion with a sharp upper limit in the number of undecided
agents. In Sec. VI we test the results of the simulations
against a time series of daily closures for the Dow-Jones
index. The stock market, in fact, can be considered as the
most studied network of social interactions. The results show
a very good agreement with some stylized facts of the finan-
cial market like the broad tails in the PDFs, temporal corre-
lations and a multifractal spectrum. We also notice an inter-
esting discrepancy in the autocorrelation function for the
volatility. Comparing the present results with those obtained
in Ref. �19�, we conjecture that the persistence in the vola-
tility memory can be explained by considering the market as
constituted by subsystems at local equilibrium and weakly
interacting with each other. It will be interesting to explore
this conjecture in a quantitative manner in a further investi-
gation.
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